A subgradient method for equilibrium problems involving quasiconvex bifunctions
نویسندگان
چکیده
منابع مشابه
On Equilibrium Problems Involving Strongly Pseudomonotone Bifunctions
We study equilibrium problems with strongly pseudomonotone bifunctions in real Hilbert spaces. We show the existence of a unique solution. We then propose a generalized strongly convergent projection method for equilibrium problems with strongly pseudomonotone bifunctions. The proposed method uses only one projection without requiring Lipschitz continuity. Application to variational inequalitie...
متن کاملA hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems
We propose a strongly convergent algorithm for finding a common point in the solution set of a class of pseudomonotone equilibrium problems and the set of fixed points of nonexpansive mappings in a real Hilbert space. The proposed algorithm uses only one projection and does not require any Lipschitz condition for the bifunctions. AMS 2010 Mathematics subject classification: 65 K10, 65 K15, 90 C...
متن کاملThe inexact projected gradient method for quasiconvex vector optimization problems
Vector optimization problems are a generalization of multiobjective optimization in which the preference order is related to an arbitrary closed and convex cone, rather than the nonnegative octant. Due to its real life applications, it is important to have practical solution approaches for computing. In this work, we consider the inexact projected gradient-like method for solving smooth constra...
متن کاملPrimal-Dual Subgradient Method for Huge-Scale Linear Conic Problems
In this paper we develop a primal-dual subgradient method for solving huge-scale Linear Conic Optimization Problems. Our main assumption is that the primal cone is formed as a direct product of many small-dimensional convex cones, and that the matrix A of corresponding linear operator is uniformly sparse. In this case, our method can approximate the primal-dual optimal solution with accuracy ε ...
متن کاملProximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems
In this paper, we introduce a stochastic projected subgradient method for weakly convex (i.e., uniformly prox-regular) nonsmooth, nonconvex functions—a wide class of functions which includes the additive and convex composite classes. At a high-level, the method is an inexact proximal point iteration in which the strongly convex proximal subproblems are quickly solved with a specialized stochast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research Letters
سال: 2020
ISSN: 0167-6377
DOI: 10.1016/j.orl.2020.07.007